草榴社区入口

草榴社区入口

Super-resolution imaging of a cell undergoing mitosis.
Image show a cell going through the process of mitosis, typical of tissue growth.

Study reveals key aspect of the finely tuned regulation of gene expression

Graciela Gutierrez

713-798-4710

Houston, TX -
Content

Your skin cells are clearly different from your brain cells even though they both develop in the same person and carry the same genes. They are different because each cell type expresses a particular set of genes that is different from the ones expressed by the other. This is possible thanks to cellular mechanisms that tightly regulate gene expression.

In a study published in the , researchers at 草榴社区入口 in Dr. Bert O鈥橫alley鈥檚 group unveil a novel key aspect of the mechanism of gene expression regulation. The findings not only contribute to a better understanding of this essential biological process but also open new possibilities to study alterations in gene expression regulation that lead to disease.

鈥淕ene expression is controlled at different levels,鈥 said lead author Dr. Anil K. Panigrahi, assistant professor in the Department of Molecular and Cellular Biology at Baylor. 鈥淚n this study, we focused on enhancers, one of the critical components that regulate gene expression. Enhancers are segments of DNA that activate gene expression by interacting with the gene鈥檚 promoter. Enhancers and promoters form physical contact, which imparts the message to the cell of when to express the gene and how much.鈥

Although enhancers and promoters appear to coordinate their actions, it is unclear how this happens. In this study, Panigrahi and his colleagues propose a mechanism that explains the tight connection between enhancers and promoters.

Enhancer-mediated regulation of gene expression has been mostly studied in intact living cells. 鈥淗owever, although much has been learned from these systems, it is difficult to control certain components in intact cells, limiting our mechanistic understanding of the process,鈥 Panigrahi said. 鈥淔or this reason, we designed a cell-free assay that enables us to control the availability of different reaction components and to determine how this affects transcription.鈥

鈥淚n the cell-free system, we saw that the enhancer and the promoter make close physical contact when the gene is transcribing, that is, making mRNA transcripts of the DNA sequence,鈥 Panigrahi said. 鈥淏ut we discovered that not only the gene but also the enhancer is being transcribed in the cell-free system, as happens in live cells.鈥

Furthermore, they found that the transcription of the enhancer reflects the transcription of the promoter. 鈥淚f we know the transcription status of the enhancer, we know the transcription status of the promoter and vice versa,鈥 Panigrahi said. 鈥淚f we omit the promoter, then transcription of the enhancer is markedly reduced and vice versa. Enhancer and promoter transcription are tightly interconnected.鈥

Previous studies using cell-based assays suggested that enhancer transcription somehow activated promoter transcription.
鈥淲hat we are saying is that this goes both ways, not just one way,鈥 Panigrahi said. 鈥淓nhancer transcription activates promoter transcription and vice versa. Not only that, if the amount of transcription in the enhancer is reduced, then the promoter transcription is also reduced and vice versa. There is transcriptional interdependence between enhancers and promoters, which was not known before.鈥

The researchers propose that such interdependence and regulatory specificity can be explained if the enhancer and the promoter are entangled within a transcriptional bubble that both provides shared resources for transcription and is regulated by the transcript levels generated.

鈥淲e are currently developing additional methodologies to conclusively test this transcriptional bubble model that enables entanglement of the participating enhancer-promoter pairs,鈥 said O鈥橫alley, chancellor in the Department of Molecular and Cellular Biology and associate director of basic research at the Dan L Duncan Comprehensive Cancer Center at Baylor. 鈥淥ur cell-free assay can be used to study promoter-enhancer interactions for any gene of interest, both in health and in disease.鈥

David M. Lonard at Baylor also contributed to this work.

This study was supported by National Institutes of Health grants HD007875 and HD08818.

Back to topback-to-top